Vector-Based Kernel Weighting: A Simple Estimator for Improving Precision and Bias of Average Treatment Effects in Multiple Treatment Settings
Discussant: Partha Deb
We varied degree of propensity score model misspecification, sample size, treatment effect heterogeneity, initial covariate imbalance, and sample distribution across treatment groups. We evaluated sensitivity of results to propensity score estimation technique (multinomial logit or multinomial probit). Across simulations, VBKW performed equally or better than the other methods in terms of bias, efficiency, and covariate balance measured via prognostic scores. For instance, we tabulated the number of scenarios in which each method led to estimates with less than 40% bias, an indication of situations in which test statistics are likely to perform well. Across 1008 analytic scenarios with a sample size of n=999 and 3 treatment groups, VBKW led to estimates with less than 40% bias in 97% of scenarios, vector matching in 70% of scenarios, kernel weights in 58% of scenarios, and IPTW in 34% of scenarios. Among the estimates with less than 40% bias, VBKW had the lowest root-mean-squared error (0.051), compared to vector matching (0.064), kernel weights (0.064), and IPTW (0.067). VBKW estimates also had the lowest median prognostic score values, indicating good covariate balance after propensity score adjustment.
Our simulations suggest that VBKW is less sensitive to PS model misspecification than other methods used to account for endogeneity in multi-valued treatment analyses. We will illustrate the implications of this for inferences from applied analyses with an example using Medical Expenditure Panel Survey (MEPS) data. Using MEPS data, we will show how inferences differ when we use IPTW, kernel weights, vector matching, and VBKW to estimate associations among potentially inappropriate medication use (none, benzodiazepines, opioids, benzodiazepines + opioids) and next-year health care expenditures among older adults.
Full Papers:
- VBKW - Garrido Lum Frakt Pizer May 23 2019.pdf (435.9KB) - Full Paper